morphogenesis是什么意思,morphogenesis中文翻譯,morphogenesis發(fā)音、用法及例句
?morphogenesis
morphogenesis發(fā)音
英:[?m?:f?'d?en?s?s] 美:[?m?:f?'d?en?s?s]
英: 美:
morphogenesis中文意思翻譯
n. 地貌形成;形態(tài)發(fā)生
morphogenesis常見(jiàn)例句
1 、These results suggested that even when embryonic tooth germs are dissociated, the single cells can reconstitute tooth, and that enamel organ morphogenesis proceeds as in natural teeth.───本研究顯示胚胎的牙胚細胞解離后,單個(gè)細胞同樣具有形成牙齒的能力,重組后釉質(zhì)的發(fā)育模式與正常牙齒相同。
2 、Abstract: Infraciliature and morphogenesis of Carchesium polypinum during asexual cucle were studied with protargol technique.───摘 要: 利用蛋白銀技術(shù)研究了螅狀獨縮蟲(chóng)無(wú)性生殖周期中的形態(tài)發(fā)生。
3 、Morphogenesis of Human Cytomegalovirus in SL_7 Cells───人巨細胞病毒在SL_7細胞中的形態(tài)發(fā)生
4 、The spatial and temporal morphogenesis of laminar hydathodes in Ficus formosana Maxim. f. shimadai Hayata was examined at light and electron microscopic levels.───摘要本研究藉由透明法、光學(xué)顯微鏡術(shù)、掃描與穿透電子顯微鏡術(shù),觀(guān)察細葉天仙果葉部泌水器的發(fā)育過(guò)程,并且著(zhù)重于描述末梢組織的發(fā)育。
5 、Abstract The ovule has been used as an excellent model system to study morphogenesis and organogenesis.───摘要 胚珠是研究器官形態(tài)發(fā)生和模式建成遺傳分子機理的一個(gè)理想系統。
6 、This article reviews the recent research advances of floral formation (including floral induction, identification of inflorescence, floral evocation and floral morphogenesis) in plants (taking example by Arabidopsis and Antirrhinum).───摘要以擬南芥、金魚(yú)草為例,介紹了近幾年植物成花(包括成花誘導、花序分生組織的組成、花發(fā)端、花器官發(fā)生及發(fā)育)研究的一些進(jìn)展。
7 、The Studies on the Morphology and Morphogenesis of Euplotes charon───卡龍游仆蟲(chóng)Euplotes charon的形態(tài)和形態(tài)發(fā)生的研究
8 、Taiwania cryptomeriodes;strobilus morphogenesis;microsporogenesis;pollen development;male sterility───關(guān)鍵詞:臺灣杉;毬果之形成;小孢子之形成;花粉發(fā)育;雄不孕
9 、At later shaping stage of the brain,FGF function in those organs and tissues control the morphogenesis and differentiation.───在較遲的大腦塑型過(guò)程中,控制大腦組織分化和結構特化;
10 、left-right morphogenesis───左右形態(tài)發(fā)生
11 、Early Morphogenesis of Visual System Is Related to Vax Family───Vax基因與視覺(jué)神經(jīng)系統的早期發(fā)育
12 、Morphogenesis of Vestibular Organ in the Mice───小鼠前庭器官的形態(tài)發(fā)生
13 、And we can see that start to happen. It's called morphogenesis.─── 可以看到這一過(guò)程開(kāi)始了 這叫形態(tài)建成
14 、The Polyembryony and Morphogenesis of Multi-seedlings in Coffee───咖啡多胚現象與多胚苗形態(tài)發(fā)育的研究
15 、Abstract :The growth of plants is a process of photomorphogenesis, and light quality played an important regulatory role in some processes of morphogenesis in plant tissue culture.───摘要:植物生長(cháng)是光形態(tài)建成的過(guò)程,光質(zhì)對植物組織培養的一些形態(tài)發(fā)生過(guò)程起重要的調節作用。
16 、THF PATHWAYS OF POLLEN PLANT MORPHOGENESIS OF HYOSCYAMUS NIGER L.───天仙子(Hyoscyamus niger L.)花粉植株形態(tài)發(fā)生的途徑
17 、ON MORPHOLOGY AND MORPHOGENESIS OF SILICA BODIES IN BAMBUSA MULTIPLEX VAR. NANA───鳳尾竹硅酸體形態(tài)及其發(fā)生初探
18 、early morphogenesis───早期發(fā)育
19 、Keywords Actinobacillus actinomycetemcomitans;Morphogenesis;Periodontitis;Dental plaque;───放線(xiàn)桿菌;伴放射菌;形態(tài)發(fā)生;牙周炎;牙菌斑;
20 、Keywords Rehmannia glutinosa;tuberous root in vitro;morphogenesis;tissue culture;───地黃;離體塊根;形態(tài)發(fā)生;組織培養;
21 、The study of HCV structural proteins will be helpful for understanding the morphogenesis and the biological characteristics of HCV, as well as for the development of HCV vaccine and diagnostic reagent.───對HCV結構蛋白的研究對于了解HCV的生物學(xué)和免疫學(xué)特性,以及發(fā)展有效的HCV基因工程疫苗和敏感的診斷試劑具有重要意義。
22 、Abstract: A variety of plant growth models for plant morphogenesis have been reported, but most of them are based on computer graphics to represent natural scenery.───摘 要 :用來(lái)構造植物形態(tài)的計算機模型很多,但大部分模型用于自然景物的模擬,所研究的內容主要集中在計算機圖形學(xué)方面。
23 、EFFECTS OF AMD AND CHM ON BULB MORPHOGENESIS AND ISOPEROXIDASE IN SEEDLING SEGMENTS OF Fritillaria pallidiflora Schrenk.───AMD與CHM對伊貝母莖段鱗莖發(fā)生及過(guò)氧化物酶同工酶的影響
24 、The Bulblet Morphogenesis of Lilium formolongi in Scale Propagation───新鐵炮百合鱗片扦**繁殖的小鱗莖形態(tài)發(fā)生
25 、Effects of NO have been identified on neurotrans-mitter release,neural morphogenesis,regulation of gene expression and cerebral blood flow.───NO調節神經(jīng)遞質(zhì)釋放和腦血流,參與神經(jīng)發(fā)育和基因表達調控.
26 、morphogenesis model───形態(tài)模型
27 、Multiple Almost Periodic Plane Wave Solutions For Franz Rothe Model of Morphogenesis───Franz Rothe形態(tài)基因模型的多重概周期平面波解
28 、Objective To explore an ideal root-fill material.Methods The natural porous hydroxyapatite (NPHA) and bone morphogenesis protein (BMP) were combined as NFHA BMF complex.───摘要目的探索一種理想的根充劑,使在根周病治療中根管充填更為理想。
29 、The interaction of GT factors and GT elements can regulate the transcrip-tion of related genes and improve resistance of plants or involve in plant morphogenesis.───GT因子與GT元件相互作用調節相關(guān)基因的轉錄, 進(jìn)而提高植物的抗性或影響植物形態(tài)建成。
30 、The main achievements made in the field of the study on phyllotaxis for eight centuries are reviewed in terms of its regularity and morphogenesis mechanism.───摘要綜述了8個(gè)世紀以來(lái),人類(lèi)在研究葉序現象的發(fā)生規律和機制方面所取得的主要成就。
31 、experimental morphogenesis───實(shí)驗形態(tài)發(fā)生
32 、Early stage morphogenesis: an approach to problems of taxonomy, phylogeny and evolution in the Mytilidae (Mollusca: Bivalvia)───早期形態(tài)發(fā)生:一種解決貽貝科(軟體動(dòng)物門(mén):雙殼綱)分類(lèi)、系統發(fā)育和進(jìn)化問(wèn)題的方法
33 、Shi , X. B. , Z. J . Qiu , L . Lu and Z. K. Xu 1990 The nuclear effect on morphogenesis during conjugation in Stylonychia mytil us. Acta Zool .───[史新柏,邱子健,盧莉,徐振康1990棘尾蟲(chóng)接合生殖期間核對形態(tài)發(fā)生的影響.動(dòng)物學(xué)報36(1):1
34 、Effect of Photoperiod on Morphogenesis of Hypocotyl and Cotyledon of Sinapis alba───光周期對白芥下胚軸和子葉形態(tài)發(fā)生的影響
35 、The morphogenesis of phyllotaxis follows some particular regularity, and is related to some hormones and genes.───發(fā)散角的形成在光照利用方面具有一定的生態(tài)學(xué)意義;
36 、英文摘要: Infraciliature and morphogenesis of Carchesium polypinum during asexual cucle were studied with protargol technique.───摘要: 利用蛋白銀技術(shù)研究了螅狀獨縮蟲(chóng)無(wú)性生殖周期中的形態(tài)發(fā)生。
37 、Objective: To compare the effects of antenatal ambroxol and dexamethason on rat fetal lung morphogenesis.───摘要目的:比較產(chǎn)前給予沐舒坦(鹽酸氨溴索注射液)、地塞米松對大鼠胎肺形態(tài)發(fā)育的影響。
38 、Keywords Rehmannia glutinosa;tuberous root;endogenous phytohormone:morphogenesis;vitrification;cryopreservation;───地黃;試管塊根;內源激素;形態(tài)建成;玻璃化;超低溫;
39 、The Demonstration and Metamorphosis of the Form--the Description of Morphogenesis Course of Service Center in Hangzhou Garden Town───形態(tài)變異及實(shí)證--杭州金渡花城小區中心會(huì )館形態(tài)生成過(guò)程描寫(xiě)
40 、Purpose To investigate the morphogenesis of histiocytic necrotizing lymphadenitis (HNL) at an angle of molecular biology in order to increase knowledge and avoid misdiagnosis.───摘要目的從分子生物學(xué)角度,探討組織性壞死性淋巴結炎的組織發(fā)生,提高認識,避免誤診。
41 、The morphogenesis of Amphicarpaea Edgeworthii benth subterraneous seed and its role in population reproduction───三籽兩型豆地下種子的發(fā)生及在自然種群繁衍中的作用
42 、aberrant morphogenesis───形態(tài)發(fā)生異常
43 、Keywords lens;crystalline;seawater;element;morphogenesis;rats;───晶體;海水;元素;形態(tài)發(fā)生;大鼠;
44 、It is well known that mouse is the most suitable species used to study morphogenesis and cell differentiation and hereditary disease in mammalian inner ear.───小鼠是研究哺乳動(dòng)物內耳形態(tài)形成及細胞分化發(fā)育、遺傳性?xún)榷膊〉臉O佳動(dòng)物。
45 、Morphology and Its Morphogenesis of the SARS-CoV Hb Strain in vitro───SARS病毒的形態(tài)結構及其在體外培養細胞中的感染裝配
46 、Morphogenesis of Antennae of Eriocheir Japonica Sinensis, Taxonomy of Mitten Crabs and Molecular Phylogeny of Grapsoidea (Crustacea: Brachyura)───中華絨螯蟹觸角的形態(tài)發(fā)育學(xué)及絨螯蟹的分類(lèi)學(xué)和方蟹總科的分子系統學(xué)研究
47 、Construction of human era eukaryotic expression vector with EGFP tag and effects of human Era on cell morphogenesis and cell cycle───帶綠色熒光蛋白標簽的人era真核表達載體的構建及人Era對細胞形態(tài)和細胞周期的影響
48 、The experimental study of morphogenesis of cartilage tissues by means of tissue engineering techniques───利用組織工程技術(shù)再生軟骨組織的實(shí)驗研究
49 、The interaction of GT factors and GT elements can regulate the transcription of related genes and improve resistance of plants or involve in plant morphogenesis.───GT因子與GT元件相互作用調節相關(guān)基因的轉錄,進(jìn)而提高植物的抗性或影響植物形態(tài)建成。
50 、Morphogenesis formation───形態(tài)建成
51 、My future work is to use this system to carry out genetic screenings to identify novel genes regulating the neuronal genesis and morphogenesis.───本實(shí)驗室將利用果蠅進(jìn)行遺傳篩選,尋找影響神經(jīng)細胞發(fā)生及形態(tài)形成的分子機制。
52 、Effects of genotype and nitrogen fertilizer on winter wheat photosynthetic parameters and leaf morphogenesis during later growth───兩種施氮水平下不同基因型冬小麥葉片光合特性與形態(tài)差異的研究
53 、Gene expression profiling of microvascular endothelial cells during capillary morphogenesis in an in vitro model of angiogenesis───三維體外血管新生模型中內皮細胞基因表達變化的芯片分析
54 、Morphogenesis of Cryosols and Associated Soils in the Alpine Zone of Tienshan, West China───中國西部天山高山帶冷生土壤及相關(guān)土壤的地貌發(fā)生學(xué)
55 、These results indicated that VZVJ 1 showed different morphogenesis in RNC and other cells.───提示VZVJ1在RNC中的形態(tài)發(fā)生不同于其它性質(zhì)的細胞。
56 、Morphogenesis of Conidial Trap in Nematode-trapping Fungi───幾種捕食線(xiàn)蟲(chóng)真菌孢子捕食器官的形態(tài)建成
57 、The outer surface of mature sclereids was smooth in Nymphoides, but with many prismatic calcium oxalate crystals in Nuphar.However, the early morphogenesis of these two kinds of sclereids was similar.───小莕菜成熟厚壁細胞的外表平滑,但臺灣萍蓬草成熟厚壁細胞的外表則可觀(guān)察到許多多面體的草酸鈣晶體,然而小莕菜與臺灣萍蓬草葉部厚壁細胞早期的形態(tài)發(fā)生類(lèi)似。
58 、The ameloblast differentiation is controlled by sequential epithelial-mesenchymal interactions during tooth morphogenesis.───成釉細胞的分化是由牙齒形態(tài)發(fā)生期上皮和間充質(zhì)的一系列相互作用調控的。
59 、Formation and morphogenesis of the protocorms of Cattleya hybrid were investigated in cytology by light micros copy and electronic microscopy.───摘要采用光學(xué)顯微鏡和電子顯微鏡技術(shù)對離體培養條件下卡德麗亞蘭原球莖產(chǎn)生及形態(tài)建成進(jìn)行了系統的細胞學(xué)觀(guān)察。
60 、Methods The natural porous hydroxylapatite (NPHA) and bone morphogenesis protein (BMP) were combined as NPHA/BMP complex.───方法 采用天然型網(wǎng)孔羥基**灰石 (NPHA) ,與骨形成蛋白 (BMP)組成NPHA/BMP復合物。
61 、There are two lessons in morphogenesis for creators of artificial evolution.───人工進(jìn)化的創(chuàng )作者可以從形態(tài)形成中學(xué)到兩個(gè)經(jīng)驗。
62 、Morphogenesis, Anatomical Observation and Primary Genetic Analysis of a Multi-Glume Floral Organ Mutant in Rice───一個(gè)水稻多重穎殼突變體的形態(tài)學(xué)觀(guān)察及初步遺傳分析
63 、Keywords dexamethasone(DEX);fetal lung;morphogenesis;───地塞米松;胎肺;形態(tài)發(fā)育;
64 、Infraciliature and morphogenesis of Carchesium polypinum during asexual cucle were studied with protargol technique.───利用蛋白銀技術(shù)研究了螅狀獨縮蟲(chóng)無(wú)性生殖周期中的形態(tài)發(fā)生。
65 、In 1952, Turing published his theory in a landmark paper entitled "On the Chemical Basis of Morphogenesis.───在1952年,圖靈在一篇里程碑的論文中發(fā)表了自己的理論。這篇文章叫做:“關(guān)于形態(tài)的化學(xué)基礎”。
66 、The effects of fatty acid in soybean on morphogenesis and ethanol tolerance of S. cerevisiae were studied by adding different quantity of soybean powder and fatty acid into ethanol fermenting mash.───摘要通過(guò)向酒精發(fā)酵醪中添加不同量的大豆粉和脂肪酸,探討大豆脂肪酸對酵母形態(tài)及酒精耐性的影響。
67 、Studies on the morphogenesis and development of rhizome from seedling and the accumulation of dioscin of Dioscorea zingiberensis C.───對盾葉薯蕷實(shí)生苗根狀莖的形態(tài)發(fā)生、發(fā)育過(guò)程及薯蕷皂甙積累與分布進(jìn)行了研究。
68 、The latest progresses and application of TCL in morphogenesis, cytology and molecular biology are reviewed.A brief description is given on problems to be solved in the use of TCL.───本文綜述了薄層培養在形態(tài)發(fā)生、細胞學(xué)、分子生物學(xué)等研究領(lǐng)域的應用現狀與進(jìn)展,并對當前薄層培養存在的問(wèn)題作了評述。
69 、STUDIES ON THE PEROXIDASE ISOZYME PATTERN DURING THE PROCESS OF MORPHOGENESIS OF GARDENIA JASM1NOIDES AND DENDRANTHEMA MORIFOLIUM CV.XiA JU.───匍匐梔子花、早菊在形態(tài)發(fā)生過(guò)程中過(guò)氧化物酶同工酶譜的研究
70 、The application of genetic bone morphogenesis protein has the broad prospects in bone tissue engineering.───基因工程化骨形態(tài)發(fā)生蛋白的應用在骨組織工程中具有廣闊的前景。
71 、Morphogenesis model of plant considering its physiological function played the important role in simulating plant growth on computer.───摘要兼顧植物生理功能的形態(tài)發(fā)生模型,是在計算機上實(shí)現模擬植物生長(cháng)發(fā)育的理論依據。
72 、The morphogenesis and develop-ment of MCV tcok place in the IB,not in the cytoplasm area.───MCV的發(fā)生發(fā)育均在銀染區內而不在胞質(zhì)區內。
73 、Keywords Arabidopsis thaliana;di-butyl phthalate (DBP);differentiation;dedifferentiation;morphogenesis;───擬南芥菜;DBP;分化;脫分化;形態(tài)發(fā)生;
74 、EGFR was especially stong stained where cell actively proliferated and stained weakly during late stage of tooth morphogenesis and differentiation.───EGFR特別地在細胞增殖活躍的部位強染,在形態(tài)發(fā)生和分化晚期染色減弱。
75 、In this mini-review, we will summarize recent progress of auxin regulation in leaf development and morphogenesis, and try to understand the complex regulation network of leaf development.───本文著(zhù)重介紹生長(cháng)素在葉片生長(cháng)發(fā)育和形態(tài)建成中的調控作用,試圖了解復雜葉片發(fā)育調控網(wǎng)絡(luò )。
76 、Organogenesis actually includes two closely linked processes, morphogenesis and differentiation.───器官形成實(shí)質(zhì)上包括兩個(gè)聯(lián)系緊密的過(guò)程,即形態(tài)發(fā)生和分化。
77 、Flores R.Peters JA.Fortes GR de L Morphogenesis of strawberry (Fragaria ananassa Duch.)cv. Vila Nova leaf discs 2000(1───宋國慶.肖興國.李紹華.楊曉東草莓葉片和葉柄再生體系的建立[期刊論文]-果樹(shù)學(xué)報2000(2
78 、The Morphogenesis of the Lutraria maxima's Embryo, Larvae and Spat───大獺蛤的胚胎、幼蟲(chóng)及稚貝的形態(tài)發(fā)育
79 、EFFECT OF DIFFERENT SUBSTRATES ON MORPHOGENESIS OF CONIDIAL TRAP OF ARTHROBOTRYS DACTYLOIDES───不同基質(zhì)對指狀節叢孢孢子捕食器官形態(tài)建成的影響
80 、Nevertheless, Turing provided an account of morphogenesis that required nothing more than chemistry and physics.───盡管如此,圖靈還是提出了一種僅僅需要化學(xué)和物理(知識)來(lái)對形態(tài)的解釋。
81 、incomplete morphogenesis───形態(tài)發(fā)育不全
石春海的1990年以來(lái)發(fā)表論文、論著(zhù)等
SCI收錄論文
(1)Shi C. H.*, J. G. Wu and P. Wu, Developmental behavior of gene expression for brown rice thickness under different environments.Genesis, 2002, 33(4):185-190.
(2)Chen Z. X., J. G. Wu, W. N. Ding, H. M. Chen, P Wu andC. H. Shi*, Morphogenesis and molecular basis on naked seed rice, a novel homeoticmutation ofOsMADS1regulating transcript level ofAP3 homologue in rice.Planta, 2006, 223(5):882-890.
(3)Li W. Q., J. G. Wu, S. L. Weng, Y. J. Zhang, D. P. Zhang andC. H. Shi*, RiceDwarf62(D62) encodes a novel GRAS protein modulating gibberellin signaling.Planta, 2010.
(4)Shi C. H.*, J. M. Xue, Y. G. Yu, X. E. Yang and J. Zhu, Analysis of genetic effects for nutrient quality traits inindicarice.Theoretical and Applied Genetics,1996, 92(8):1099-1102.
(5)Shi C. H.*, J. Zhu, R. C. Zang and G. L. Chen, Genetic and heterosis analysis for cooking quality traits ofindicarice in different environments.Theoretical and Applied Genetics, 1997, 95(1-2):294-300.
(6)Li C. T.,C. H. Shi*, J. G. Wu, H. M. Xu, H. Z. Zhang and Y. L. Ren, Methods of developing core collections based on the genotypic value of rice (Oryza sativaL.).Theoretical and Applied Genetics,2004, 108(6): 1172-1176.
(7)Zheng X., J. G. Wu, X. Y. Lou, H. M. XuandC. H. Shi*, The QTL analysis on maternal and endosperm genome and their environmental interactions for characters of cooking quality in rice (Oryza sativaL.).Theoretical and Applied Genetics, 2008, 116(3): 335-342.
(8)Wu J. G.,C. H. Shi*,S. Y. Chen, J. F. Xiao, The cytological mechanism of low fertility in the naked seed rice.Genetica,2004, 121(3):259-267.
(9)Shi C. H.*, G. K. Ge, J. G. Wu, J. Ye and P. Wu, The dynamic gene expression from different genetic systems for protein and lysine contents of indica rice.Genetica, 2006, 128(1-3):297-306.
(10)Cui Y. H., J. G. Wu,C. H. Shi*, R. M. C. Littelly and R. L. Wu*, Modelling epistatic effects of embryo and endosperm QTL on seed quality traits.Genetical Research,2006, 87:61-71.
(11)Wu J. G. andC. H. Shi*, Calibration model optimization for rice cooking characteristics by near infrared reflectance spectroscopy (NIRS).Food Chemistry, 2007, 103(3):1054-1061.
(12)Jiang S. L., J. G. Wu, Y. Feng, X. E. Yang andC. H. Shi*, Correlation analysis of mineral element contents and quality traits in milled rice (Oryza staviaL.).Journal of Agricultural Food Chemistry,2007,55(23): 9608-9613.
(13)Chen X. J., J. G. Wu,S. J. Zhou, Y. J. Yang,X. L. Ni,J. Yang,Z. J. Zhu* andC. H. Shi*,Application of near-infrared reflectance spectroscopy to evaluate the lutein and b-carotene in Chinese Kale.Journal of Food Composition and Analysis, 2009, 22(2):148-153.
(14)Shi C. H.*, J. G. Wu, X. M. Zhang and P. Wu, Developmental analysis on genetic behavior of brown rice recovery inindicarice across environments.Plant Science, 2002, 163(3):555-561.
(15)Zhang H. Z.,C. H. Shi*, J. G. Wu, Y. L. Ren, C. T. Li, D. Q. Zhang and Y. F. Zhang, Analysis of genetic and genotype ′ environment interaction effects from embryo, cytoplasm and maternal plant for oleic acid content ofBrassica napusL.Plant Science, 2004, 167(1): 43-48.
(16)Lin J. R.,C. H. Shi*, M. G. Wu and J. G. Wu, Analysis of genetic effects for cooking quality traits ofjaponicarice across environments.Plant Science,2005, 168(6):1501-1506.
(17)Shi C. H.*, J. Zhu, and J. G. Wu, Genetic and Genotype ′ Environment Interaction Effects from Embryo,Endosperm, Cytoplasm and Maternal Plant for Rice Shape Traits ofIndicaRice.Field Crops Research, 2000,68(3):191-198.
(18)Shi C. H.*, J. G. Wu, X. B. Lou, J. Zhu and P. Wu, Genetic analysis of transparency and chalkiness area at different filling stages of rice (Oryza sativaL.).Field Crops Research, 2002, 76(1):1-9.
(19)Wu J. G.,C. H. Shi*, X. M. Zhang and L. J. Fan, Estimating the amino acid composition in the milled rice powder by near-infrared reflectance spectroscopy.Field Crops Research, 2002, 75(1):1-7.
(20)Wu J. G. andC. H. Shi*, Prediction of grain weight, brown rice weight and amylose content in single seeds of rice using near-infrared reflectance spectroscopy.Field Crops Research,2004, 87:13-21.
(21)Li W. Q., J. G. Wu, S. L. Weng, D. P. Zhang, Y. J. Zhang andC. H. Shi*, Characterization and Fine Mapping of the Glabrous Leaf and Hull Mutant (gl1) in Rice (Oryza sativaL.).Plant Cell Reports, 2010, 29:617~627.
(22)Wu J. G.,C. H. Shi*and H. Z. Zhang, Genetic analysis of embryo, cytoplasmic and maternal effects and their environment interactions for protein content inBrassica napusL.Australian Journal of Agriculture Research, 2005, 56(1):69-73.
(23)Shi C. H.*, Y. Shi, X. Y. Lou, H. M. Xu, X. Zheng and J. G. Wu*, Identification of endosperm and maternal plant QTLs for protein and lysine contents of rice across different environments.Crop & Pasture Science, 2009, 60(3):295-301.
(24)Zhang H. Z.,C. H. Shi*, J. G. Wu, Y. L. Ren, C. T. Li, D. Q. Zhang and Y. F. Zhang, Analysis of genetic effects and heritabilities for linoleic and linolenic acid content ofBrassica napusL. across environments.European J. of Lipid Science and Technology,106 (8):518-523.
(25)Shi C. H.*, J. G. Wu and P. Wu, Genetic analysis of developmental behavior for amylose content in filling process of rice.Journal of the Science of Food and Agriculture,2005, 85(5):791-796.
(26)Pkania C. K., J. G. Wu, H. M. Xu, C. T. Li andC. H. Shi,* Addressing rice germplasm genetic potential using genotypic value to develop quality core collections.Journal of the Science of Food and Agriculture,2007, 87:326-333.
(27)Lu X. H.,L. H. Wu,L. J. Pang,Y. S. Li,J. G. Wu,C. H. Shiand F. S. Zhang, Effects of plastic film mulching cultivation under non-flooded condition on rice quality.Journal of the Science of Food and Agriculture,2007, 87:334-339.
(28)Variath M. T., J. G. Wu, L. Zhang andC. H. Shi*, Analysis of developmental genetic effects from embryo, cytoplasm and maternal plant for oleic acid content and linoleic acid content of rapeseed.Journal of Agricultural Sciences,2010, 148(4):375~391.
(29)Zhang X. M.,C. H. Shi*, J. G. Wu, H. Hisamitsu, T. Katsura, S. Y. Feng, G. L. Bao and S. H. Ye, Analysis of variations in the amylose content of grains located at different positions in the rice panicle and the effect of milling.Starch, 2003, 55(6):265-270.
(30)Yang B. C., B. G. Xiao, X. J. Chen andC.H. Shi*,Assessing the genetic diversity of tobacco germplasm using ISSR and IRAP markers.Annals of Applied Biology,2007, 150:393-401.
(31)Wu J. G.,C. H. Shi*, X. M. Z hang and T. Katsura, Genetic analysis of non-essential amino acid contents in rice (Oryza sativaL.) across environments.Hereditas, 2004, 141:128-134.
(32)Jiang S. L.,C. H. Shi and J. G. Wu, Studies on mineral nutrition and safety of wild rice (OryzaL.).International Journal of Food Sciences and Nutrition, 2009, 60(1): 139-147.
(33)Jiang S. L., J. G. Wu, Nguyen Ba Thang, Y. Feng, X. E. Yang andC. H. Shi*, Genotypic variation of mineral elements contents in rice (Oryza staviaL.).European Food Research and Technology,2008, 228 (1):115-122.
(34)Wu J. G.,C. H. Shi*and H. Z. Zhang, Partitioning genetic effects due to embryo, cytoplasm and maternal parent for oil content in oilseed (Brassica napusL.).Genetics and Molecular Biology, 2006, 29(3):533-538.
(35)Ge G. K.,C. H. Shi*, J. G. Wu and Z. H. Ye, Analysis of the genetic relationships from different genetic systems between the amylose content and the appearance quality ofindicarice across environments.Genetics and Molecular Biology, 2008, 31(3):711-716.
(36)Shi C. H.*, J. Zhu, X. E. Yang, Y. G. Yu and J. G. Wu, Genetic analysis for protein content inindicarice.Euphytica, 1999, 107(2):135-140.
(37)Shi C. H.*, H. Z. Zhang, J. G. Wu, C. T. Li and Y. L. Ren, Genetic and genotype ′ environment interaction effects analysis for erucic acid content in rapeseed (Brassica napusL.).Euphytica, 2003, 130(2):249-254.
(38)Zhang X. M.,C. H. Shi*,S. H. Ye, J. G. Wu and G. L. Bao, Genetic analysis of methionine content inindica-japonicahybrid rice (Oryza sativaL.) at different grain developmental stages.Euphytica, 2004, 139(3):249-256.
(39)Variath M. T., J. G. Wu, Y. X. Li , G. L. Chen andC. H. Shi*, Genetic analysis for oil and protein contents of rapeseed (Brassica napusL.) at different developmental times.Euphytica, 2009, 166(1):145-153.
(40)Shi C. H.*,J. Zhu, J. G. Wu, X. E. Yang and Y. G. Yu., Analysis of embryo, endosperm, cytoplasmic and maternal effects for heterosis of protein and lysine content inindicahybrid rice.Plant Breeding, 1999,118(6):574-576.
(41)Fan L. J., B. M. Hu,C. H. Shiand J. G. Wu, A method of choosing locations based on genotype ′ environment interaction for regional trials of rice.Plant Breeding, 2001, 120(2):139-142.
(42)Guo L. B., Y. Z. Xing, H. W. Mei, C. G. Xu,C. H. Shi, P Wu and L. J. Luo, Dissection of component QTL expression in yield formation in rice.Plant Breeding,2005, 124 (2):127-132.
(43)Wu J. G.,C. H. Shi*, X. M. Z hang and T. Katsura, Genetic and genotype × environment interaction effects for the content of seven essential amino acids inindicarice.Journal of Genetics, 2004, 83(2):19-24.
(44)Shi C. H.*, H. Z. Zhang and J. G. Wu, Analysis of embryo, cytoplasmic and maternal correlations for quality traits of rapeseed (Brassica napusL.) across environments.Journal of Genetics, 2006, 85(2):147-151.
(45)Shi C. H. *, Q. Q. Zhu, K. M Wang, G. K. Ge, J. G. Wu and Z. H. Xu*, Detecting the relationships between the amylose content and the amino acid contents ofindicarice from different genetic systems with conditional approach.Journal of Genetics, 2010, 89(1):1~8.
(46)Yu G. Q., Y. Bao,C. H. Shi, C. Q. Dong and S. Ge, Genetic diversity and population differentiation of Liaoning weedy rice detected by RAPD and SSR markers.Biochemical Genetics, 2005, 43(5-6) 261-270.
(47)Yang X. E., Z. Q. Ye,C. H. Shi, M. L. Zhu and R. D. Graham, Genotypic differences in concentrations of iron, manganese, copper, and zinc in polished rice grains.Journal of Plant Nutrition, 1998, 21(7):1453-1462.
(48)Zhang J., M. Y. Wang, L. H. Wu, J. G. Wu andC. H. Shi, Impacts of combination of foliar iron and boron application on iron biofortification and nutritional quality of rice grain.Journal of Plant Nutrition, 2008, 31(9): 1599-161.
(49)Wu J. G.,C. H. Shi*, X. M. Z hang and T. Katsura, Genetic analysis of endosperm, cytoplasmic and maternal effects for semi-essential amino acids inindicarice (Oryza sativaL.) across environments.Cereal Research Comunication, 2004, 32(4):435-442.
(50)Zhang X. M.,C. H. Shi*, J. G. Wu S. H. Ye and Y. B. Qi, Analysis of developmental genetics for phenylalanine content in indica-japonica hybrid rice (Oryza sativa L.) across environments.Cereal Research Communication, 2006, 34(2):949-956.
(51)Thang N. B., J. G. Wu, W. H. Zhou, W. Q. Li andC. H. Shi*, The screening of mutants and construction of mutant library forOryza sativacv. Nipponbare via ethyl methane sulphonate inducing.Biologia, 2010, 65(4):660~669
(52)吳建國、石春海*和張海珍,構建整粒油菜籽脂肪酸成分近紅外反射光譜分析模型的研究。光譜學(xué)與光譜分析(Spectroscopy and Spectral Analysis),2006,26(2):259~262。
Wu J. G, Shi C. H and Zhang H. Z, Study on developing calibration models of fat acid composition in intact rapeseed by near infrared reflectance spectroscopy.Spectroscopy and Spectral Analysis, 2006, 26(2):259~262.
(53)Shi C. H.*, J. G. Wu, L. J. Fan, J. Zhu and P. Wu, Developmental genetic analysis of brown rice weight at different environments inindicarice (Oryza sativaL.).Acta Botanica Sinica(植物學(xué)報), 2001, 43(6):603-609.
(54)Shi C. H.* and J. Zhu, Genetic analysis of cytoplasmic and maternal effects for milling quality inindicarice.Seed Science and Technology.1998, 26(2):481-488.
(55)Jiang S. L.,C. H. Shi*and J.G. Wu, Determination of trace amount for germanium (Ge) by atomic fluorescence spectrometry in rice (Oryza sativaL.).Journal of Food Quality, 2007, 30:481-495.
(56)Shi C. H.*,J. Zhu and Y. G. Yu., Genotype × environment interaction effect and genotypic correlation for nutrient quality traits ofindicarice (Oryza sativa).Indian J. Agricultural Science, 2000, 70(2):85-89.
藏南聶拉木地區中侏羅統(上巴通階) 鐵質(zhì)鮞粒砂巖組沉積時(shí)代和成因討論
1 西藏聶拉木縣拉弄拉剖面生物地層學(xué)
**圖 1 西藏聶拉木縣拉弄拉剖面交通位置圖
西藏聶拉木縣拉弄拉剖面 ( **圖 1) 位于中尼公路的 5264 km 里程碑處路東側大薩久溝內,東行約 1. 5 km 處,可見(jiàn)含有鐵質(zhì)砂巖組形成的紅色小山包上的 “鐵帽”,地形上頗為醒目 ( **圖 2) 。本文沿用徐鈺林等人 ( 1990) 對該剖面的命名,即拉弄拉剖面,該剖面經(jīng)作者 1999 年測量,建立了較為詳細的菊石層序,并命名鐵質(zhì)鮞粒砂巖組 ( Yin et al. ,2000) 。拉弄拉剖面自下而上分別為拉弄拉組 ( 中侏羅世早巴柔期) 、鐵質(zhì)鮞粒巖組 ( 晚巴通期)和門(mén)卡敦組 ( 早卡洛夫期至提塘期) 。拉弄拉組和上巴通階鐵質(zhì)鮞粒砂巖組之間存在著(zhù)一個(gè)時(shí)間跨度約為 8 Ma 的沉積缺失 ( Yin et al. ,2000) 。而上巴通階鐵質(zhì)鮞粒砂巖組與上覆門(mén)卡敦組底部為整合接觸。由于沉積構造僅見(jiàn)于鐵質(zhì)鮞粒砂巖組,茲將該組巖性,化石和層序描述如下。
**圖 2 拉弄拉剖面中侏羅統鐵質(zhì)疊層石砂巖景觀(guān)
上覆地層 門(mén)卡敦組的黑色泥頁(yè)巖,黑色泥巖夾有再沉積的土**厚層狀鐵質(zhì)鮞粒砂巖團塊;
含菊石: Macrocephalites gucuoi ( Westermann et Wang) ,Homoeoplanulites balinensis ( Neumayr) ,Macrocephalites cf. jaquoti ( Douvillé) ,Macrocephalites bifurcates ( Westermann et Callomon) ,Jean-neticeras cf. anomalum Elmi, Khaiceras cf. devauxi ( Gross ) 和 Bomburites cf. microstoma( d'Orbigny) 等
——整合——
鐵質(zhì)鮞粒砂巖組 由新到老依次為:
7. 土**厚層鐵質(zhì)鮞粒砂巖或泥質(zhì)砂巖,富含 菊石,如 Phylloceras sp. ,Oxycerites cf. orbis ( Giebel) ,Cadomites sp. ,Procerites sp. ,Macrocephalites cf. jaquoti ( Douvillé) ,Choffatia ( Grossouvria) cf. bathonica ( Mangold) 約 1. 3 m
6. 紫紅色含鈣質(zhì)薄層狀鐵質(zhì)疊層石砂巖: 下部為波狀黑紅色鐵質(zhì)層和土**砂質(zhì)層互層; 上部可見(jiàn)為成管柱狀的疊層石砂巖個(gè)體,不含其它化石 約 0. 5 ~0. 8 m
5. 薄層灰巖層,向上過(guò)渡到薄層鐵質(zhì)砂巖,偶含菊石化石 ( macrocephalit-id) ,缺少其它底棲類(lèi)生物化石 約0. 3 m
4. 薄層灰巖透鏡體,在剖面上向東延伸約 20 米逐漸尖滅,未見(jiàn)化石 0. 5 m
3. 灰綠色粉砂巖透鏡體,在剖面上向東延伸約 20 米逐漸尖滅,未見(jiàn)化石 0. 2 m
2. 厚層狀砂質(zhì)灰巖,富含箭石化石 Belemnopsis 約 0. 45 m
1. 灰綠色薄層粉砂巖,未見(jiàn)化石 約 0. 15 m
- - - - 沉積缺失 ( 假整合) - - - -
下伏地層 聶聶雄拉組生物碎屑灰巖; 含有晚巴柔期菊石 Chondroceras evolves-cense ( Waagen) ,Chondroceras cf. crassicostatum ( Westermann) ,Dorsetensia cf. ed-ouardiana ( d'Orbigny) ,Dorsetensia cf. liostraca ( Buckman) ,和 Stephanoceras sp. ,以及腕足類(lèi)和雙殼類(lèi) >60 m
2 拉弄拉剖面鐵質(zhì)砂巖沉積組合時(shí)代和成因分析
拉弄拉剖面拉弄拉組生物碎屑灰巖產(chǎn)出菊石 Chondroceras evolvescense ( Waagen) ,Chon-droceras cf. crassicostatum Westermann,Dorsetensia cf. edouardiana,以及 Stephanoceras sp. 指示其時(shí)代為下巴柔階 Humphriesianum 菊石帶。鐵質(zhì)鮞粒砂巖組上部的鐵質(zhì)鮞粒砂巖層中含有豐富的菊石,其中有 Phylloceras sp. ,Oxycerites cf. orbis ( Giebel) ,Cadomites sp. ,Proceritessp. ,Macrocephalites gucuoi ( Westermann and Wang) ,Macrocephalites cf. jaquoti ( Douvillé) ,Choffatia ( Grossouvria) cf. bathonica ( Mangold) 。其中,Oxycerites orbis ( Giebel) 是西北歐上巴通階 Orbis 菊石帶的帶化石。這層鐵質(zhì)鮞粒砂巖層向上逐漸過(guò)渡到黑色泥巖,后者含有菊石 Macrocephalites cf. jacquoti ( Douvillé) ,Homoeoplanulites cf. evolutum Sandoval et Gabaron 和Homoeoplanulites balinensis ( Neumayr) 指示西北歐上巴通階 Discus 菊石帶。這層含菊石的黑色泥巖向上過(guò)渡到灰黑色含泥質(zhì)結核頁(yè)巖層,后者含有豐富的早卡洛夫期的菊石化石,例如Macrocephalites bifurcatus; M. guocuoi Jeanneticeras cf. anomalum,Khaiceras cf. devauxi,Bom-burites cf. microstoma 和 Neuqueniceras ( Frickites) tibeticum 。值得注意的是,這條剖面迄今尚未發(fā)現晚卡洛夫期的菊石代表,晚卡洛夫期很有可能是缺失的 ( **圖3,**圖4) 。
**圖 3 拉弄拉剖面中侏羅統鐵質(zhì)疊層石砂巖近觀(guān)
**圖 4 拉弄拉剖面中侏羅統鐵質(zhì)疊層石砂巖剖面地層和菊石帶
Rioult 等 ( 1991) 將鐵質(zhì)砂巖按照鐵質(zhì)沉積物的大小,區分為平行成層的 ( stromato-lite pavement) ,厘米級的圓形的鐵質(zhì)鮞球 ( oncoids) ,以及分選很好的鐵質(zhì)鮞粒 ( ooids) 。早期對于英格蘭南部早侏羅世的鐵質(zhì)沉積巖被解釋為是由于生物 ( 藻類(lèi)) 和非生物共同作用而形成的。而近年來(lái),Palmer 等則提出新的觀(guān)點(diǎn),認為這種鐵質(zhì)結核的形成與非光合作用的鐵質(zhì)氧化細菌的作用有關(guān)。特別是 Préat 等人 ( 1998,1999,2000) 通過(guò)對于歐洲古生代和中生代的含鐵沉積巖的研究揭示了鐵質(zhì)結核 ( 鮞粒) 沉積組合的成因,他們認為大部分鐵質(zhì)都是來(lái)源于細菌活動(dòng)。這是一種與 Beggiatoaceae ( 貝氏硫化細菌超科) 有關(guān)的絲狀細菌類(lèi) ( filamentous bacteria) ,它們通常在水深超過(guò) 50m 至上百米水深的海相靜水環(huán)境中繁衍,即最有可能在透光帶以下的深度生存,在這種通常為缺氧和低氧狀態(tài)的環(huán)境下,鐵質(zhì)成分的可溶性呈相對較低的狀態(tài)。在西藏拉弄拉地區的鐵質(zhì)鮞粒砂巖組的沉積構造包括平行成層的鐵質(zhì)疊層石結構砂巖 ( stromatolitic pavement) ( 圖版 1,圖 8) ,或是由數厘米大小圓形的鐵質(zhì)鮞球 ( oncoids) ( 圖版 1,圖 2,3) ,以及分選很好的鐵質(zhì)鮞粒砂巖層 ( oolids) 組成,它們構成一套和 Rioult 等 ( 1991) 描述所相同的鐵質(zhì)砂巖沉積序列。從宏觀(guān)上看,拉弄拉剖面的鐵質(zhì)鮞粒砂巖組中的化石缺少底棲類(lèi)型很有可能和沉積基底介于缺氧或無(wú)氧狀態(tài)有關(guān)。因為拉弄拉剖面的鐵質(zhì)鮞粒砂巖組中的箭石類(lèi)和菊石類(lèi)均屬于積極的游泳類(lèi)型動(dòng)物,其生存水體的深度估計大于 100 m ( 陰家潤、萬(wàn)曉樵,1996) 。從總體上來(lái)看,拉弄拉地區的鐵質(zhì)鮞粒砂巖組與其上覆的門(mén)布組是一套在晚巴通期開(kāi)始的海侵背景下的沉積序列,對于拉弄拉剖面含藻灰質(zhì)砂巖的鐵質(zhì)砂巖組合、化石古生態(tài)和沉積環(huán)境的分析表明,這套沉積序列的水體逐漸加深,是一個(gè)連續的環(huán)境變化過(guò)程 ( **圖5) 。
**圖 5 拉弄拉剖面中侏羅統鐵質(zhì)疊層石砂巖沉積環(huán)境圖解
拉弄拉地區早巴柔期以前的沉積環(huán)境為淺海碳酸鹽臺地,生物碎屑灰巖和泥灰巖的總體厚度超過(guò) 100 m,但由于區域性構造運動(dòng),自早巴柔期晚期直至中巴通期,本區上升成為剝蝕區。隨著(zhù)全球性晚巴通期海平面迅速升高,原本經(jīng)歷長(cháng)期剝蝕的拉弄拉地區由于海侵形成新的沉積區,整個(gè)鐵質(zhì)疊層石砂巖組合的沉積過(guò)程可以識別出以下三個(gè)階段:
( 1) 海侵初期,由于海平面的迅速上升,成為可以容納狹鹽度的箭石動(dòng)物 Belemnop-sis 生存的正常鹽度海相環(huán)境。根據對箭石類(lèi)動(dòng)物的氣殼裂限深度的計算,侏羅紀箭石Belemnopsis 最適宜的生存環(huán)境的水深多在 100 m 左右 ( Westermann,1973; 1990) 。盡管地層記錄中的箭石也通常發(fā)現于淺水區沉積相 ( 20 ~50m) ,但是如果生物組合中缺乏其他底棲生物,完全是由箭石動(dòng)物組成的,則更有可能表明其生態(tài)環(huán)境水深接近 100 m 左右。一般而言,水深接近100 m 的海底屬于低能環(huán)境。但是保存箭石化石的地層底面凹凸不平,顯示為高能水流侵蝕的沖刷面,箭石殼體在此沖刷面以上頗為稠密,表現為經(jīng)過(guò)高能水流改造而再沉積的殼體密度較大的箭石殼層。在箭石殼層上覆的巖層中,箭石殼體數量驟然減少,零星分布在圍巖中,顯示出水流改造的能力明顯降低。所以這套含箭石化石的沉積序列和受風(fēng)暴控制的介殼沉積的特點(diǎn)可以很好的比較。這一階段的沉積以鈣質(zhì)成分為主,兼有粉砂質(zhì)沉積,但是并沒(méi)有鐵質(zhì)成分,證明早期風(fēng)化剝蝕的沉積基底和陸源碎屑物供給區并沒(méi)有能夠成為鐵質(zhì)成分沉積的來(lái)源。換言之,傳統的鐵質(zhì)沉積來(lái)源于風(fēng)化剝蝕的解釋不適用于本區。
( 2) 海平面持續上升,導致沉積環(huán)境水體深度加大,良好發(fā)育的鐵質(zhì)砂巖的成層構造需要在水動(dòng)力很小的靜水環(huán)境和缺乏底棲生物的破壞作用下方能形成。鐵質(zhì)砂巖的沉積構造組合主要由厚數毫米的褐紅色薄層富含鐵質(zhì)砂巖和灰**薄層砂巖交替組成,其組合層序和 Préat 等描述的法國諾曼底地區巴柔期的鐵質(zhì)砂巖組合幾乎一致: 底部由大體和沉積基底接近平行的層理過(guò)渡到中部為鼓包狀的丘狀層理 ( 即所謂的 stromatolitic pave-ment) ,上部多直徑為 5 ~ 6 cm 的球狀層理 ( 即所謂的 oncoid) 和圓柱狀疊層石砂巖沉積構造,最上部是鐵質(zhì)鮞粒砂巖 ( 即所謂分選良好的 oolids) ??紤]到本區在鐵質(zhì)砂巖沉積之前的含箭石鈣質(zhì)砂巖沉積的水深已在透光帶之下,鐵質(zhì)鮞粒砂巖中所含的菊石也指示著(zhù)深水沉積環(huán)境,諸如菊石個(gè)體較大,以葉菊石科和大頭菊石科分子為主體。葉菊石科多在外陸坡深水環(huán)境生存,大頭菊石科多在外陸棚和近陸坡的相對的深水環(huán)境繁衍 ( 陰家潤,等 1996) 。所以,這些不同形態(tài)的鐵質(zhì)成層構造成因很有可能來(lái)源于較深水環(huán)境的細菌生物化學(xué)沉積作用。隨著(zhù)海平面進(jìn)一步上升,鐵質(zhì)疊層石砂巖勢必在更深的水體沉積。顯然,那些需要進(jìn)行光合作用的藻類(lèi)是不可能在這樣的深度生存的,只有那些依靠非光合作用的細菌和藻類(lèi)的生物化學(xué)沉淀作用形成鐵質(zhì)疊層石砂巖,這一類(lèi)異養性質(zhì)的細菌和藻類(lèi)捕獲鐵質(zhì)的機理應該如同 Préat 等 ( 1998,1999,2000) 所描述的那樣,鐵質(zhì)層和砂巖層的交替可能與微生物的生物化學(xué)沉淀作用和沉積物的相互作用有關(guān)。
我們知道,現代海洋中以藻類(lèi)進(jìn)行光合作用的水體深度多在0 ~15 m 之間。但是從拉弄拉剖面的古生態(tài)學(xué)研究中已經(jīng)知道當時(shí)的古環(huán)境水深遠遠大于 15m。此外,對于生物沉淀和砂巖層的交替,曹瑞驥等 ( 2001) 從元古宙似錐藻灰質(zhì)砂巖的層理的形成的研究角度出發(fā),認為是由于微生物的生長(cháng)速度和礦物的沉積速率之間達到一種振動(dòng)–平衡狀態(tài)下形成的。
( 3) 早卡洛夫期初期海平面持續上升。晚巴通期的鐵質(zhì)鮞粒砂巖層過(guò)渡為早卡洛夫期初期富含泥質(zhì)結核的黑色泥巖和黑灰色頁(yè)巖。頁(yè)巖中產(chǎn)出的菊石動(dòng)物群生物分異度較高。以大頭菊石科為代表的菊石動(dòng)物群,其生存水體深度介于 150 ~300 m 之間,為陸坡環(huán)境。大量泥質(zhì)結核的產(chǎn)生與底流水的強烈擾動(dòng)有關(guān),因此有可能作為不利于鐵質(zhì)細菌生存的主要原因之一。頁(yè)巖中的富有機質(zhì)成分可能代表強還原環(huán)境,是導致鐵質(zhì)成分消失的另一個(gè)原因。
3 討論
奧陶紀和侏羅紀是全球范圍內鐵質(zhì)鮞粒砂巖沉積的兩個(gè)主要時(shí)期。侏羅紀時(shí)的鐵質(zhì)鮞粒砂巖沉積主要發(fā)育在早—中侏羅世。在中生代泛大陸裂解以前,早侏羅世的鐵質(zhì)鮞粒巖沉積集中在西北歐地區; 中侏羅世鐵質(zhì)鮞粒巖沉積在歐洲地區的分布相對于早侏羅世大大減少,但是在歐洲以外的其他大陸分布較廣。特提斯喜馬拉雅中侏羅統鐵質(zhì)鮞粒砂巖的沉積分布相當廣泛,幾乎遍布于西特提斯和東特提斯南緣,自西北歐的英國,經(jīng)德國、法國、阿拉伯半島、至巴基斯坦 Zanskar 和 Sipiti 地區、中國西藏阿里地區、尼泊爾的塔克霍拉地區和中國西藏聶拉木縣的拉弄拉地區; 但是在各處其時(shí)代并不完全相同,介于巴柔期、巴通期和早卡洛夫期之間變化 ( Jansa,1991) 。中侏羅世的鐵質(zhì)鮞粒砂巖之所以能夠從西歐向東沿著(zhù)特提斯海南緣呈長(cháng)達數萬(wàn)千米的條帶狀分布,可能和當時(shí)古海岸位置的變化和偏移有密切的聯(lián)系。在東特提斯喜馬拉雅地區,如巴基斯坦的 Zanskar,印巴交界處的 Sipiti 地區,中侏羅統的鐵質(zhì)鮞粒砂巖沉積的上覆地層通常是含豐富泥質(zhì)結核和大頭菊石科分子,因此其時(shí)代被認為是早卡洛夫期。尼泊爾中部的塔克霍拉地區的鐵質(zhì)鮞粒砂巖層有晚巴通期菊石 ( Cariou et al. ,1994) 。西藏聶拉木縣拉弄拉侏羅紀地層剖面曾先后經(jīng)有多人研究,由于缺乏系統的化石采集和菊石層序的資料,無(wú)論是對該剖面的鐵質(zhì)鮞粒砂巖沉積層的上覆及下伏地層,還是對鐵質(zhì)砂巖沉積本身的時(shí)代的確定都存在著(zhù)謬誤,鐵質(zhì)鮞粒砂巖沉積成因也缺乏確切的解釋。Westermann 等 ( 1988) 根據鐵質(zhì)砂巖沉積層上覆灰黑色頁(yè)巖中的大頭菊石科化石,將鐵質(zhì)砂巖作為該區 “斯匹提頁(yè)巖”的底部而將其納入下卡洛夫階。徐鈺林等則根據黃亞平 ( 1982) 未發(fā)表碩士論文的化石鑒定結果將其定為卡洛夫階。聶拉木縣拉弄拉剖面的出現的兩層鐵質(zhì)砂巖是由于構造作用錯斷而形成的,菊石層序也充分證明了地層重復 ( Yin et al. ,2000) 。但是在近年的西藏喜馬拉雅地區層序地層學(xué)研究中,拉弄拉剖面原本為同一層的鐵質(zhì)鮞粒砂巖卻被作為時(shí)代不同的兩段沉積,并被解釋為兩套古風(fēng)化殼,成為卡洛夫期 “超級層序”上、下層序界面 ( Shi et al. ,1996; Shi 2000) 。Houten ( 1985) 認為,中侏羅世的鐵質(zhì)鮞粒巖沉積和岡瓦納大陸主裂解期相關(guān)聯(lián),它也是海平面上升和海侵的標志 ( Houten,1985; Hallam,1992,2001) 。以西藏聶拉木的拉弄拉剖面為例,晚巴通期的鐵質(zhì)鮞粒砂巖沉積雖然發(fā)生在海侵早期,但是它們是在沉積環(huán)境的水深達到相當深度以后才得以形成的。目前我們所看到的 “鐵帽”地貌是在現代風(fēng)化作用下形成的。在喜馬拉雅特提斯地區,晚巴通期至早卡洛夫期的鐵質(zhì)鮞粒砂巖沉積代表了顯著(zhù)的海平面上升期 ( Jansa,1991; Garzanti E. 1999) ,而不是海退期以后遭受剝蝕的 “古風(fēng)化殼”。顯而易見(jiàn),將同一層鐵質(zhì)鮞粒巖劃分為時(shí)代不同的兩段沉積,并進(jìn)而將其解釋為卡洛夫期的 “超級層序”上、下層序界面的做法是不合適的。
對于鮞粒沉積巖相的解釋?zhuān)瑖鴥纫酝純A向于淺水成因,例如最近完成的聶拉木縣幅地質(zhì)調查報告 ( 朱同興,2004. ) ,也是將這套鐵質(zhì)鮞粒砂巖視為潮坪和內陸棚淺水環(huán)境下的沉積。近年來(lái),國際上對于鐵質(zhì)砂巖層中的 “疊層石砂巖狀”沉積構造和鐵質(zhì)鮞粒的沉積成因的解釋更加趨向于細菌的生物化學(xué)沉積作用 ( Palmer and Wilson,1990; Préatet al. ,1998; 1999,2000) 。與對于疊層石砂巖成因的傳統解釋所不同的是,鐵質(zhì)砂巖的疊層石結構是在水動(dòng)力強度不大,非透光帶的深水環(huán)境下形成的。如前所述,西藏聶拉木地區侏羅系的這套鐵質(zhì)疊層石結構砂巖沉積組合,其時(shí)代和成因一直缺乏合理的解釋。在特提斯喜馬拉雅范圍內,中侏羅世鐵質(zhì)疊層石結構砂巖層層雖然厚度一般僅為 3 ~ 5 m,但是分布廣泛,其上覆地層是富含有機質(zhì)的黑色 “斯匹提頁(yè)巖相”沉積。通過(guò)對西藏聶拉木地區拉弄拉剖面的鐵質(zhì)砂巖沉積組合宏觀(guān)的相分析和古生態(tài)研究,可以得到如下初步結論: ①西藏聶拉木地區拉弄拉剖面的鐵質(zhì)砂巖沉積是在海平面迅速上升的地質(zhì)背景形成的。這是一套全球性晚巴通期—早卡洛夫期高海平面下的海侵期的沉積記錄; 而不是所謂的早卡洛夫期和晚卡洛夫期的古風(fēng)化殼層。②這套鐵質(zhì)沉積主要發(fā)生在近陸坡的較深水環(huán)境,處于非透光帶,因此,細菌或藻類(lèi)產(chǎn)生的鐵質(zhì)沉淀和光合作用沒(méi)有必然的聯(lián)系。③這套鐵質(zhì)砂巖沉積組合中的鐵質(zhì)成分不是來(lái)源于陸源碎屑供給區的早期風(fēng)化剝蝕,而最有可能與持續上升的海平面所造成的深水環(huán)境下細菌或藻類(lèi)產(chǎn)生的生物化學(xué)沉淀作用有關(guān)。
參 考 文 獻
曹瑞驥,袁訓來(lái),肖書(shū)海 . 2001. 論錐藻灰質(zhì)砂巖群 ( Conophyton) 的形態(tài)發(fā)生 . 古生物學(xué)報,40 ( 3) : 318 ~329
史曉穎 . 2000. 藏南中—新生代層序地層學(xué)和海平面變化. 王鴻禎主編 . 中國層序地層學(xué)研究 . 297 ~316 頁(yè),廣州 .廣東科技出版社 . Shi X. 2000. Mesozoic to Cenozoic sequence stratigraphy and sea level changes in southern Xizang ( Tibet) . Inwang et al. ( eds. ) ,Research on sequence stratigraphy in China. Sciences and Technology press of Guangdong,Guangzhou,p. 297 ~ 316 ( in Chinese with English abstract)
徐鈺林,萬(wàn)曉樵,茍宗海,張啟華 . 1990. 西藏侏羅紀,白堊紀和第**生物地層 . 武漢: 中國地質(zhì)大學(xué)出版社,144 頁(yè) . Xu Y Wan X Gou Z Zhang Q. 1990. Biostratigraphy of Xizang ( Tibet) in the Jurassic,Cretaceous and Tertiary peri-ods. China University of Geosciences Press,Wuhan,144pp ( in Chinese with English abstract)
陰家潤,史曉穎,茍金,雷振宇 . 1992. 唐古拉山中侏羅統緬甸光牡蠣殼層的事件沉積成因及其環(huán)境意義 . 現代地質(zhì),6 ( 3) : 254 ~266。Yin J Sh X Gou J Lei Z. 1992. Middle Jurassic oyster - shell beds ( Liostrea burmanica Reed) fromTanggula Maintains,and their environmental significance. Geosciences,63: 254 ~ 266 ( in Chinese with English abstract)
陰家潤,萬(wàn)曉樵 . 1996. 侏羅紀菊石形態(tài)作為特提斯喜馬拉雅海水深標志 . 古生物學(xué)報,35 ( 1) : 72 ~ 79. Yin JWan X. 1996. Jurassic ammonite morphotypes as water - depth indicator og Tethyan Himalayan sea. Acta Palaeontologica Sinica,35 ( 1) : 72 ~ 79 ( in Chinese with English abstract)
朱同興,周銘魁,鄒光富,李建忠,馮心濤,莊忠海,賈保江 . 2004. 聶拉木縣幅地質(zhì)調查新成果及主要進(jìn)展 . 地質(zhì)通報,23 ( 5/6) : 433 ~437。Zhu T Zhou M Zou G Li J Feng X Zhuang Z Jia B. 2004. New results and main progress in geo-logical survey of Nyalam County Sheet. Geological Bullentin of China,23 ( 5 /6) : 433 ~ 437 ( in Chinese with English abstract)
Cai R Yuan X Xiao S. 2001. On morphogenesis of Conophyton Stromatolites – Analyses of a Conophyton – like specimen from Neoproterozoic Jiudingshan Formation in N. Jiangsu province,China. Acta Palaeontologica Sinica,40 ( 3) : 318 ~ 329 ( inChinese with English abstract)
Cariou,E. Enay,R. & Bassollet,J - P Colchen,M. 1994. Biochronologie du Jurassique moyen de la Thakkhola ( Nepal central) et biogeographie du domaine himalayen. C. R. Acad. Sci. Paris,t. 318,ser. II,93 ~ 99
Garzanti,E. 1999. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. Journal of Asian EarthSciences. 17 ( 1999) : 805 ~ 827
Gatrall,M. Jenkyns,H. C. & Parsons,C F. 1972. Limonitic concretions from the European Jurassic,with particular refer-ence to the ” Snuff - Boxes”of southern England. Sedimentology 18: 79 ~ 103
Hallam,A. 1992. Phaneroic sea - level changes. Columbia University Press,New York
Hallam,A. 2001. A review of the broad patterns of Jurassic sea level changes and their possible causes in the light of currentknowledge. Palaeogeography,Palaeoclimatology,Palaeoecology,167 ( 2001) ,23 ~ 37
Houten Van F B. 1985. Oolitic ironstones and contrasting Ordovician and Jurassic Paleogeography. Geology 13: 722 ~ 724
Jansa,L . F. 1991. Processes affecting paleogeography,with examples from the Tethys. Paleogeography,Paleoclimatology,Paleoecology,87 ( 1991) : 345 ~ 371
Palmer T J Wilson M. 1990. Growth of ferruginous oncoliths in the Bajocian ( Middle Jurassic) of Europe. Terra Nova 2,142~ 147
Préat,A Mamet B & Devleeschouwer X. 1998. Sedimentologie du stratotype de la limite Frasnien - Famennien ( Coumiac,Montagne Noire,France) . Bull. Soc. Geol. France 169 ( 3) : 331 ~ 342
Préat A Mamet B Bernard A Gillan D. 1999. Bacterial mediation, red matrices diagenesis, Devonian, Montagne Noire( southern France) . Sedimentary Geology,126 ( 1 /4) : 223 ~ 243
Préat A Mamet B D Ridder C Boulvain F Gillan D. 2000. Iron bacterial and fungal mats,Bajocian stratotype ( Mid - Juras-sic,northern Normandy,France) ,Sedimentary Geology,137 ( 3) : 107 ~ 126
Rioult M Dugue O Jan du Chene R Ponsot C,Fily G Noron J M Vail R. 1991. Outcrop sequence stratigraphy of the Anglo -Paris Basin,Middle to Upper Jurassic ( Normandy,Maine,Dorset) . Bull. Centres Rech. Explor. – Prod. Elf Aquitaine 15 /1:101 ~ 194
Shi X Yin J Jia C. 1996. Mesozoic to Cenozoic sequence stratigraphy and sea - level changes in the Northern Himalayas,Southern Tibet,China. Newsl. Stratigr. 33: 15 ~ 61
Westermann G E G. 1973. Strength of concave septa and depth limits of fossil cephalopods. Lethaia 6: 383 ~ 403
Westermann G E G Wang Y. 1988. Middle Jurassic ammonites of Tibet and the age of the Lower Spiti Shales. Paleontology,31: 295 ~ 339
Westermann G E G. 1990. New developments in ecology of Jurassic - Cretaceous ammonoids. In: Pallini G Cecca F Cresta SSantantonio M. ( eds. ) ,Atti del secondo convegno internazionale,fossili,evoluzione,ambiente,Pergola,25 ~ 30 Ottobre1987,Tectnostampa,Osta Vetere,Italy. pp. 459 ~ 478
Yin J. 1996. Neuqueniceras ( Frickites ) tibeticum: an Andean ammonite in the Middle Jurassic of South Tibet. NeusJb. Geol. Palaont. 1996,H9,517 ~ 526
Yin J Callomon J H Enay R. 2000. A hiatus of 8 My duration in the Middle Jurassic with ammonite succession in the TethyanHimalayas ( South Tibet) Geobios. 33 ( 2) : 210 ~ 210
Age and Sedimentation History of the LateBathonian ( Middle Jurassic) FerruginousStromatolite-bearing Sandstone Beds from the Nyalam Area,Southern Tibet
Abstract The late Bathonian Ferruginous Stromatolite Sandstone Formation unconformably overlies the Early Ba-jocian Nieniexiongla Formation. This has been recently documented by the ammonite succession in the Nyalamarea,South Tibet. The base and the lower beds of the formation are less ferruginous,indicating that iron-precipita- tion in the formation likely had nothing to do with any previous erosion process. Ammonites and belemnites,as well as the facies succession suggest sub- or aphotic environments with waterdepths fluctuating between 100-300 m as result of a rapid sea-level rise. The ferruginous stromatolites are thought to be the product of biochemical sedi-mentation by bacteria and fungi,and a response of the global sea-level rise that took place during late Bathonian to early Callovian times.
Keywords Tibet,Middle Jurassic,ammonites,Ferruginous Stromatolite Sandstone Formation
1—拉弄拉剖面鐵質(zhì)疊層石砂巖沉積組合露頭景觀(guān),其中含有 5 ~ 8 cm 大小的球狀構造; 2—鐵質(zhì)疊層石砂巖層的球狀構造 ( 直徑 6 ~9 cm) ; 3—箭石層,圖中約 1 cm 大小的白色圓點(diǎn)為箭石殼橫斷面,示成層的箭石殼體; 4—鐵質(zhì)疊層石砂巖層的圓柱狀構造的橫切面所顯示的同心圓狀層理 ( 手標本光面,直徑5 cm) ; 5—拉弄拉剖面鐵質(zhì)砂巖沉積組合的非鐵質(zhì)沉積層: a. 下伏巴柔期生物碎屑灰巖; b. 薄層粉砂巖; c,d. 箭石灰巖,箭石灰巖之間夾有) 薄層粉砂巖; e. 鐵質(zhì)疊層石砂巖; 6—鐵質(zhì)疊層石砂巖露頭景觀(guān),鐵質(zhì)砂巖層和下伏灰巖層為正地形,鐵質(zhì)砂巖層的上覆黑色頁(yè)巖往往形成負地形 ( 圖右側深色部位) ; 7—箭石灰巖層中的箭石不定向排列; 8—鐵質(zhì)疊層石砂巖層的平行層理 ( stromatolitic pavement,手標本光面,寬 6 cm) ; 9—拉弄拉剖面鐵質(zhì)疊層石砂巖沉積 ( 圖上部深色為鐵質(zhì)砂巖層) 和下伏的早巴柔期生物碎屑灰巖與泥灰巖互層; 10—鐵質(zhì)疊層石砂巖層的圓柱狀構造縱向 ( 生長(cháng)方向) 層理( 手標本光面,高 7 cm) ; 11—拉弄拉剖面層露頭景觀(guān); 12—鐵質(zhì)疊層石砂巖層 ( 地質(zhì)錘所指處)
版權聲明: 本站僅提供信息存儲空間服務(wù),旨在傳遞更多信息,不擁有所有權,不承擔相關(guān)法律責任,不代表本網(wǎng)贊同其觀(guān)點(diǎn)和對其真實(shí)性負責。如因作品內容、版權和其它問(wèn)題需要同本網(wǎng)聯(lián)系的,請發(fā)送郵件至 舉報,一經(jīng)查實(shí),本站將立刻刪除。