simulated annealing中文翻譯,simulated annealing是什么意思,simulated annealing發(fā)音、用法及例句
- 內容導航:
- 1、simulated annealing
- 2、最優(yōu)化理論與方法的目錄
1、simulated annealing
simulated annealing發(fā)音
英: 美:
simulated annealing中文意思翻譯
常用釋義:模擬退火:一種隨機改進(jìn)算法
模擬退火法
simulated annealing雙語(yǔ)使用場(chǎng)景
1、Stochastic network can employ simulated annealing method to optimize parameters of equivalent circuits.───隨機網(wǎng)絡(luò )可利用模擬退火算法優(yōu)化等效電路參數.
2、The method of simulated annealing algorithm is used to solve the model.───并給出了模型求解的方法,通過(guò)模擬退火算法優(yōu)化求解該模型.
3、Simulated Annealing Tools Software complete source code can be directly used by the test.───模擬退火工具軟件完整的源代碼可以直接使用的考驗.
4、So the combination of genetic algorithm and simulated annealing could be sufficient to initial alignment for speed and precision.───因此,將遺傳算法和模擬退火算法結合起來(lái),能很好地解決初始對準的速度和精度的問(wèn)題。
5、The simulated annealing algorithm is used to determine material parameters of fluid - saturated porous media response data.───本文研究了模擬退火算法在流體飽和孔隙介質(zhì)參數反演中的應用.
6、To optimize sub - job assignments, two simplified algorithms of simulated annealing are proposed.───為優(yōu)化子作業(yè)指派, 提出了兩個(gè)簡(jiǎn)化的仿真退火算法.
7、Self - adaptative simulated annealing is selected as optimization method for this thesis.───選擇自適應模擬退火算法作為本文的優(yōu)化方法.
8、The dissertation designed simulated annealing algorithms and hybrid algorithms for searching parameters during inversion.───將模擬退火算法和混合算法用于反演過(guò)程中的參數尋優(yōu).
9、So, simulated annealing and simplex combine to form a global hybrid method.───因此本文將快速模擬退火和下降單純形結合起來(lái),形成全局混合法.
10、In this paper, we present a speculative simulated annealing algorithm for task mapping.───本文提出了一種冒險模擬退火算法.
11、The strike price and the interest rate is solved, using simulated annealing.───最后, 應用模擬退火算法,求解貼現價(jià)格、履約價(jià)格.
12、To optimize discrete volume, a stochastic solution procedure via an improved simulated annealing algorithm is presented.───通過(guò)分段積分的方法,解決了柔度的最優(yōu)化問(wèn)題, 從而改進(jìn)了現有的模型.
13、So the simulated annealing algorithm is introduced to solving the material balance equation.───因此,本文引入模擬退火算法求解物質(zhì)平衡方程。
14、Very fast simulated annealing method ( VFSA ) is used in cross dipole anisotropy inversion commonly.───正交偶極子各向異性反演中一般采用快速模擬退火算法 ( VFSA).
15、The subproblem is solved by simulated annealing algorithm.───該子問(wèn)題可通過(guò)模擬退火算法來(lái)解決.
16、The simulated annealing is combined with genetic algorithm. The new tournament selection strategy is proposed.───通過(guò)將模擬退火算法嵌入到遺傳算法中,建立了一種新的錦標賽選擇策略。
17、This paper studies the simulated annealing algorithm for topology optimization of truss.───研究了平面桁架結構拓撲優(yōu)化設計的模擬退火算法.
18、A mathematical model for ferry schedule problem is developed and solved with simulated annealing algorithm.───建立了客輪調度問(wèn)題的數學(xué)模型,并用模擬退火算法求其數值解.
simulated annealing相似詞語(yǔ)短語(yǔ)
1、vaulted ceiling───拱形的天花板
2、simple ordering───線(xiàn)性序
3、simulated leather───仿皮革
4、simulated leathers───人造革
5、simultaneous translation───同聲傳譯;同步翻譯
6、simulating───n.模擬;假裝
7、self-annealing───自退火
8、simultaneous translations───同聲傳譯;同步翻譯
9、simultaneity───n.同時(shí);[計][力]同時(shí)性;同時(shí)發(fā)生
2、最優(yōu)化理論與方法的目錄
第1篇線(xiàn)性規劃與整數規劃
1最優(yōu)化基本要素
1.1優(yōu)化變量
1.2目標函數
1.3約束條件
1.4最優(yōu)化問(wèn)題的數學(xué)模型及分類(lèi)
1.5最優(yōu)化方法概述
習題
參考文獻
2線(xiàn)性規劃
2.1線(xiàn)性規劃數學(xué)模型
2.2線(xiàn)性規劃求解基本原理
2.3單純形方法
2.4初始基本可行解的獲取
習題
參考文獻
3整數規劃
3.1整數規劃數學(xué)模型及窮舉法
3.2割平面法
3.3分枝定界法
習題
參考文獻
第2篇非線(xiàn)性規劃
4非線(xiàn)性規劃數學(xué)基礎
4.1多元函數的泰勒展開(kāi)式
4.2函數的方向導數與最速下降方向
4.3函數的二次型與正定矩陣
4.4無(wú)約束優(yōu)化的極值條件
4.5凸函數與凸規劃
4.6約束優(yōu)化的極值條件
習題
參考文獻
5一維最優(yōu)化方法
5.1搜索區間的確定
5.2黃金分割法
5.3二次插值法
5.4切線(xiàn)法
5.5格點(diǎn)法
習題
參考文獻
6無(wú)約束多維非線(xiàn)性規劃方法
6.1坐標輪換法
6.2最速下降法
6.3牛頓法
6.4變尺度法
6.5共軛方向法
6.6單純形法
6.7最小二乘法
習題
參考文獻
7約束問(wèn)題的非線(xiàn)性規劃方法
7.1約束最優(yōu)化問(wèn)題的間接解法
7.2約束最優(yōu)化問(wèn)題的直接解法
習題
參考文獻
8非線(xiàn)性規劃中的一些其他方法
8.1多目標優(yōu)化
8.2數學(xué)模型的尺度變換
8.3靈敏度分析及可變容差法
習題
參考文獻
第3篇智能優(yōu)化方法
9啟發(fā)式搜索方法
9.1圖搜索算法
9.2啟發(fā)式評價(jià)函數
9.3A*搜索算法
習題
參考文獻
10Hopfield神經(jīng)網(wǎng)絡(luò )優(yōu)化方法
10.1人工神經(jīng)網(wǎng)絡(luò )模型
10.2Hopfield神經(jīng)網(wǎng)絡(luò )
10.3Hopfield網(wǎng)絡(luò )與最優(yōu)化問(wèn)題
習題
參考文獻
11模擬退火法與均場(chǎng)退火法
11.1模擬退火法基礎
11.2模擬退火算法
11.3隨機型神經(jīng)網(wǎng)絡(luò )
11.4均場(chǎng)退火
習題
參考文獻
12遺傳算法
12.1遺傳算法實(shí)現
12.2遺傳算法示例
12.3實(shí)數編碼的遺傳算法
習題
參考文獻
第4篇變分法與動(dòng)態(tài)規劃
13變分法
13.1泛函
13.2泛函極值條件——歐拉方程
13.3可動(dòng)邊界泛函的極值
13.4條件極值問(wèn)題
13.5利用變分法求解最優(yōu)控制問(wèn)題
習題
參考文獻
14最大(?。┲翟?/p>
14.1連續系統的最大(?。┲翟?/p>
14.2應用最大(?。┲翟砬蠼庾顑?yōu)控制問(wèn)題
14.3離散系統的最大(?。┲翟?/p>
習題
參考文獻
15動(dòng)態(tài)規劃
15.1動(dòng)態(tài)規劃數學(xué)模型與算法
15.2確定性多階段決策
15.3動(dòng)態(tài)系統最優(yōu)控制問(wèn)題
習題
參考文獻
附錄A中英文索引
Part 1Linear Programming and Integer Programming
1Fundamentals of Optimization
1.1Optimal Variables
1.2Objective Function
1.3Constraints
1.4Mathematical Model and Classification of Optimization
1.5Introduction of Optimal Methods
Problems
References
2Linear Programming
2.1Mathematical Models of Linear Programming
2.2Basic Principles of Linear Programming
2.3Simplex Method
2.4Acquirement of Initial Basic Feasible Solution
Problems
References
3Integer Programming
3.1Mathematical Models of Integer Programming and Enumeration
Method
3.2Cutting Plane Method
3.3Branch and Bound Method
Problems
References
Part 2Non?Linear Programming
4Mathematical Basis of Non?Linear Programming
4.1Taylor Expansion of Multi?Variable Function
4.2Directional Derivative of Function and Steepest Descent Direction
4.3Quadratic Form and Positive Matrix
4.4Extreme Conditions of Unconstrained Optimum
4.5Convex Function and Convex Programming
4.6Extreme Conditions of Constrained Optimum
Problems
References
5One?Dimensional Optimal Methods
5.1Determination of Search Interval
5.2Golden Section Method
5.3Quadratic Interpolation Method
5.4Tangent Method
5.5Grid Method
Problems
References
6Non?Constraint Non?Linear Programming
6.1Coordinate Alternation Method
6.2Steepest Descent Method
6.3Newton?s Method
6.4Variable Metric Method
6.5Conjugate Gradient Algorithm
6.6Simplex Method
6.7Least Squares Method
Problems
References
7Constraint Optimal Methods
7.1Constraint Optimal Indirect Methods
7.2Constraint Optimal Direct Methods
Problems
References
8Other Methods in Non Linear Programming
8.1Multi Objectives Optimazation
8.2Metric Variation of a Mathematic Model
8.3Sensitivity Analysis and Flexible Tolerance Method
Problems
References
Part 3Intelligent Optimization Method
9Heuristic Search Method
9.1Graph Search Method
9.2Heuristic Evaluation Function
9.3A*Search Method
Problems
References
10Optimization Method Based on Hopfield Neural Networks
10.1Artificial Neural Networks Model
10.2Hopfield Neural Networks
10.3Hopfield Neural Networks and Optimization Problems
Problems
References
11Simulated Annealing Algorithm and Mean Field Annealing Algorithm
11.1Basis of Simulated Annealing Algorithm
11.2Simulated Annealing Algorithm
11.3Stochastic Neural Networks
11.4Mean Field Annealing Algorithm
Problems
References
12Genetic Algorithm
12.1Implementation Procedure of Genetic Algorithm
12.2Genetic Algorithm Examples
12.3Real?Number Encoding Genetic Algorithm
Problems
References
Part 4Variation Method and Dynamic Programming
13Variation Method
13.1Functional
13.2Functional Extreme Value Condition—Euler?s Equation
13.3Functional Extreme Value for Moving Boundary
13.4Conditonal Extreme Value
13.5Solving Optimal Control with Variation Method
Problems
References
14Maximum (Minimum) Principle
14.1Maximum (Minimum) Principle for Continuum System
14.2Applications of Maximum (Minimum) Principle
14.3Maximum (Minimum) Principle for Discrete System
Problems
References
15Dynamic Programming
15.1Mathematic Model and Algorithm of Dynamic Programming
15.2Deterministic Multi?Stage Process Decision
15.3Optimal Control of Dynamic System
Problems
References
Appendix AChinese and English Index
版權聲明: 本站僅提供信息存儲空間服務(wù),旨在傳遞更多信息,不擁有所有權,不承擔相關(guān)法律責任,不代表本網(wǎng)贊同其觀(guān)點(diǎn)和對其真實(shí)性負責。如因作品內容、版權和其它問(wèn)題需要同本網(wǎng)聯(lián)系的,請發(fā)送郵件至 舉報,一經(jīng)查實(shí),本站將立刻刪除。